If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v^2-14v+40=0
a = 1; b = -14; c = +40;
Δ = b2-4ac
Δ = -142-4·1·40
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-6}{2*1}=\frac{8}{2} =4 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+6}{2*1}=\frac{20}{2} =10 $
| -22=-4r-10 | | 10x+2x^2=61 | | (-2+54)+(9x+13)=90 | | 6+b+3b=18 | | 2n^2+10n-2=406 | | −4(9−3x)=0 | | 5(x-7=6(x+2) | | 2y−3=√3y2−10y+12 | | 7x=(√49)7 | | -3(x-4)-8=6 | | 180-2x=64 | | x-4=0+17 | | 4y=(2y+8) | | 10+2(2x+1)=16 | | -z-3=-10 | | x-4=12(0)+17 | | 2n−1=3 | | -102=6(n-4) | | 2z/8=8 | | 6y+3=90 | | 4+z=10 | | 2/5x-1=-2 | | x(3)+x(2)+1=16 | | -8=-2(-10+n) | | 7x+6=4x+11 | | X÷5=3÷35+x+1÷7 | | x⁴+5x²+4=0 | | 7x=(7)7 | | 16=-7y=+3(y+4) | | (x)(2x)^2=1.3*10^-18 | | 4(x+2)+6=-8 | | 4(x+2)+6=8 |